!'_ Unsupervised Learning

A little knowledge...



i A few “synonyms”...

= Agminatics

= Aciniformics

= Q-analysis

= Botryology

= Systematics

= [aximetrics

= Clumping

= Morphometrics

Nosography
Nosology
Numerical taxonomy

Typology
Clustering



‘L Exploratory Data Analysis

= Visualization methods with little or no
numerical manipulation

= Dimensionality Reduction
= Multidimensional Scaling
» Principal Components Analysis, Factor Analysis
» Self-Organizing Maps

= Cluster Analysis

» Hierarchical
= Agglomerative
= Divisive

= Non-hierarchical




i Outline

= Proximity
= Distance Metrics
= Similarity Measures
= Multidimensional Scaling

= Clustering

= Hierarchical Clustering
= Agglomerative

= Criterion Functions for Clustering
= Graphical Representations




Algorithms, similarity measures, and
graphical representations

= Most algorithms are not necessarily
linked to a particular metric or similarity
measure

= Also not necessarily linked to a
particular graphical representation

= Be aware of the fact that old algorithms
are being reused under new names!



i Common mistakes

= Refer to dendrograms as meaning
“hierarchical clustering” in general

= Misinterpretation of tree-like graphical
representations

= Refer to self-organizing maps as clustering

= Ill definition of clustering criterion
= Declare a clustering algorithm as “best”

= Expect classification model from clusters
= Expect robust results with little/poor data



i Unsupervised Learning
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!'_ Metrics




i Minkowski r-metric

dij =
= Manhattan g
= (city-block) /
]
= Euclidean dy =




i Metric spaces

Reflexivity Y

= Symmetry dij — dﬁ
= Triangle
inequality dij < dih T dhj

= Positivity d. > dii — ()




i More metrics

» Ultrametric d, <max|d,.d, J
replaces

d; <d,+d,

1 h

= Four-point d,, +d, <max|(d, +d, )(d, +d,)
additive replaces
condition d,<d,+d,



i Similarity measures

= Similarity function
« For binary, “shared attributes”

i'j

il
s(i, ) = | i =[1,0,1]
"/ J2x1 j =[0,0,1]

s(i, J) =




i Variations...

s Fraction of 4 attributes shared

R A
s(u)=7’

= Tanimoto coefficient
. i'j
S(ZD.]): of o of o of
11+ ] J—1]
1 i =[1,0,1]
2+1-1 i =10,0,1]

s(i,]) =



i More variations...

s Correlation

= Linear
= Rank

= Entropy-based
= Mutual information

= Ad-hoc
= Neural networks



‘L Dimensionality Reduction




i Multidimensional Scaling

s Geometrical models

= Uncover structure or pattern in
observed proximity matrix

= Objective is to determine both
dimensionality d and the position of
points in the g-dimensional space



i Metric and non-metric MDS

= Metric (Torgerson 1952)

= Non-metric (Shepard 1961)

= Estimates nonlinear form of the monotonic
function
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Similarity Data

Judged similerities between 14
spectral colers varying in wave-

- length from 434 o 674 nanom-
eters (from Ekman, 1954).
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Relation of Data to

Spatial Representation

. Ghiained retation between Ekmen’'s

original similerity data for the 14
colors and the Euclidean distances
in Shepard’s spatial solution..
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Spatial Representation

'TWO_-dimenslunal spatisl solution

for the 14 colors ebtained by
Shepard (1962) on the basis of
Ekman's (1954) similarity data,

Violet



~Similarity, Si;

Multidimensional Scaling Schema : .
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1t is invariant under any monotonic {order-preserving]
transformations of the similarity data.



| Relation of Data to
Similarity Data Spatial Representation
Percent “same” judgments for all
pairs of successively presented
aural signals of the international
Morse Code (from Rothkopf, 1957).

- original similarity data for the 36
Morse Code signals and the Euclidean
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Spatial Representation

Two-dimenstonal spatial soiution
Tor the 36 Morse Code signals oblained
by Shepard (1963) on the basis of
Rethkopl's (1957) similarily data.
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i Stress and goodness-of-fit

Stress

20
10
5
2.5
0

Goodness of fit

Poor
Fair
Good
Excellent
Perfect






Non-Hierarchical:
‘L Distance threshold

X2
ia
I _ dy = .03
- & h.‘-'.; .
l‘ls l' e 3 = [
5 .'ﬁ L] V‘
Ni] .
L & ™
Ll ."'i . *
B -
"’F 'I. E'- NT: L
™ . n % a @
F #
2 L
" .
-, =
£ 5 4 6 8 i

10.7. The distance threshold affects the number and size of clusters in similarity based clustering
fethods. For three different values of distance dj, lines are drawn between points closer than dy—the smaller
je value of dy, the smaller and more numerous the clusters.

Duda et al., "Pattern Classification”



i Hierarchical
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i Additive Trees

= Commonly the minimum spanning tree

= Nearest neighbor approach to
hierarchical clustering

= Single-linkage



i Other linkages

= Single-linkage: proximity to the closest
element in another cluster

= Complete-linkage: proximity to the most
distant element

= Average-linkage: average proximity
= Mean: proximity to the mean (centroid)
[only that does not require all distances]




i Hierarchical Clustering

= Agglomerative Technigue
= Successive “fusing” cases

= Respect (or not) definitions of intra- and
/or inter-group proximity

= Visualization
=« Dendrogram, Tree, Venn diagram




Graphical Representations

Voiceless stops
and fricatives

Voiceless Voiced -

Fig. 6. Alternative clustering analyses of Miller and Nicely's (25) data on confusions of 16 consonants. {A) Hierarchical tree obtained by using
Johnson's (50) nonmetric “‘diameter”™ (or **‘complete-link’") method. (B) The same hierarchical clustering displayed as embedded in the two-
dimensional scaling solution of Fig. JA. [From Shepard {26)] (C) Nonhierarchical clustering obtained by ADCLUS analysis of the same data,
embedded in the same two-dimensional scaling solution. The Arabic numerals indicate the ranks of the clusters by estimated weights. [From
Shepard and Arabie (32)]



‘-Ih)ata Visualization




